分数除法单元计划(优选23篇)

时间:2025-04-10 12:14:29 作者:admin

分数除法单元计划 第1篇

教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数解决简单的实际问题。

教学重点:

理解倒数的意义

理解分数除法的意义

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件以及实物投影仪

课时安排:

1课时

第一课时:

一、复习倒数的'概念,为进入分数除法作知识铺垫。

什么是倒数?举例说明。

二、引出课题,引导学生分析。(课件出示)

引导分析:

该如何表示?

如何将平均分成2份?(横或纵的方法,还有斜分法。但以横为好)

用什么计算方法?列出算式:

÷2=

通过图形涂抹,来理解分数除法的意义,出示下图:

将平均分成2份后,每份实际上只占原图形的

学生质疑。

三、再次研究分数除法的类型:

课件出示:

分析:如何把4份平均分成3份呢?引导学生观察后,提出横向分割的方法,出示下图:

将中的四份,再平均分成如图的3份。然后引导学生仔细观察,所分得的份点,点原分数的几分之几?

如何用算式表示上述过程?

学生质疑:你还有什么不懂的地方吗?让其它学生针对存在问题,相互讨论释疑。

四、课堂练习。

你在以上的练习过程中,发现了什么吗?

先组织学生讨论,再归纳总结如下:

反馈性练习:

试一试,指名学生板演:

五、课堂小贴士:

1、学习了本节内容后,你觉得有什么收获?

2、分数除法与整数除法,有什么区别也联系吗?

六、课堂作业:

七、课后作业:伴你成长P19。教师巡视辅导,对个别学困生重点解疑。

分数除法单元计划 第2篇

教学目标

1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

2.掌握分数乘、除法应用题的分析、解答方法.

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

教学难点

准确判断单位1,正确地解答分数应用题.

教学步骤

一、铺垫孕伏

(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位1.

1.鹅的只数是鸭的 .

2.甲的 是乙.

3.乙是甲的 .

4.男生人数的 相当于女生.

5.小齿轮的齿数占大齿轮的 .

(三)列式计算.

1.4是12的几分之几?

2.12的 是多少?

3.一个数的 是4,求这个数.

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题

2.提问:应把谁看作单位1?是根据题中哪句话判断的?

3.画图.

4.列式解答

答:鹅的只数是鸭的 .

(二)教学例3第(2)、(3)题.

池塘里有12只鸭,鹅的'只数是鸭的 .池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1.画图理解题意

2.列式解答

3.集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.

2.解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位1;

不同点:根据已知、未知的变化,确定不同的解答方法.

解题关键是:正确分析题中的数量关系,明确谁作单位1.

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

六、板书设计

分数乘、除法应用题对比

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

412=

答:鹅的只数是鸭的 .

2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

12 =4(只)

答:池塘里有4只鹅.

3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

4 =12(只)

答:池塘里有12只鸭.

分数除法单元计划 第3篇

【教学目标】

1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2、掌握一个数除以分数的计算方法,并能正确的计算。

3、培养学生乐于交流、喜欢数学的情操,感受数学来源于生活。

【教学重点】

一个数除以分数的计算法则推导过程。

【教学过程】

课前谈话:

《皇帝内经》中说春天是一个生发的季节,对于你们小孩子来说,要多运动才能长高个,那么春天还是一个美容的季节,爱美的女士们在这个季节要注重皮肤护理,多做面膜多补水。春天还是一个开始减肥的最佳季节,夏天可以穿漂亮的衣服,美美的。和老师聊天长知识吧?老师希望你们像我一样,多留心观察生活,积累生活经验。

一、课前导入

昨天毕老师问我,夏天马上到了,有没有一种快速减肥的方法?于是我给毕老师介绍了一款素食减肥营养饼。这素食减肥营养饼,胖子吃了能变瘦,瘦子吃了能变壮,于是我给办公室几个老师限量赠送四张饼,并制定了饮食计划。孙老师每天吃2张,白老师每天吃1张,毕老师每天吃半张,袁老师每天吃四分之一张,听到这里,你想知道什么?

生1:谁每天吃最少?(这都知道了)

生2:他们能吃几天?(太棒了)

二、新知探究

(一)探究整数除以分数

1.下面请同学们结合学习指南,完成学习单上第一部分内容。

指名读学习指南。(附:学习指南)

1、独立思考:

(1)分一分:把分饼的过程用算式记录下来。

(2)想一想:结合分饼的过程,总结算法。

2、合作交流:与组员分享自己的想法。

师:明白学习指南的要求了吗?现在开始。(学生完成,教师巡视抽取样本)

(学生独立完成学习单,时间3分钟。学生小组讨论时间2分50秒。)

2.组织汇报:

师:请你结合分饼过程说一说算式中每一个数字的意义。

生1:第一个算式:4÷2=2,4表示4张饼,每天吃2张,2表示能吃2天。

第二个算式:4÷1=4,4表示4张饼,每天吃1张,4表示能吃4天。

第三个算式:4÷=4×2=8张饼,每天吃这张饼的二分之一,每张饼分两份,一张饼吃两天,4乘2,表示吃8天。

第四个算式:4÷=4×4=16张饼,每天吃这张饼的四分之一,每张饼分四份,一张饼吃四天,4乘4,表示吃16天。

师:你说的太棒了,我还想请你再说一说,算式中4乘2和4乘4中的2和4在图中表示什么?

生:2表示每张饼分成2份,一张饼吃2天,4张饼可以吃8天,4表示4分之一的倒数,代表一张饼吃4天,4乘4等于16天。

师:太棒了,给她点掌声。这个同学解释了2遍,我相信你们一定能听懂。

这两个算式是整数除以分数,通过这两个算式的计算过程你发现了什么?

生:一个数除以另一个数等于一个乘这个数的倒数。

师:一个数和另一个数我们用整数除以分数代表更准确些。

观察这四个算式有什么相同点和不同点。

生:他们每人都有四张饼

师:这是从表象上看,我们可以算式更深层次去分析。前两道题是整数除以整数的除法算式,后两道是整数除以分数的除法算式,他们都是求4里面有几个除数。也就是说整数除法算式和分数除法算式意义有什么关系?

生:是不是可以把分数除法转化为分数乘法?

师:no,我是说意义上,前两个和后两个算式都是在求4里面有几个除数,也就是说整数除法意义和分数除法意义有什么关系?就两个字。

生:相同

师:有什么不同点?

生:以1为分界线,1往上,商比被除数小,1的'话,商和被除数相等,1往下,商比被除数大。

师:说的不错,但是就以这两个题,其实我们在找不同点的时候,可以从计算方法上去分析。前两道整数除以整数除法你是怎么计算的,后两道整数除以分数你是怎么计算的?

生:整数除以整数直接除,整数除以分数把分数变成它的倒数。

师:说的特别好,掌声送给他。奖励20分当家币。

(二)探究分数除以分数

演算法验证

师:刚才我们结合分饼的过程掌握了整数除以分数计算方法,那么这种方法针对分数除以分数也同样适用吗?我们来看这道题,(÷)谁会算?

生:÷,我打算把变成倒数,用乘,3和9约分,4和8约分,最后等于。

师:你是利用整数除以分数计算法则来计算分数除以分数的,但是这只是一个猜测,没有说服力,我们需要验证,怎样来验证分数除以分数也可以转化为分数乘法来计算?大家想,我如果我们用刚才简单的分饼初级操作来验证力不从心。老师给大家介绍一种新的方法,叫做演算法。演算法是你经过深入学习数学常用到的一种方法。根据知识的新旧承接,利用旧知识迁移、转化,算出结果,要想用演算法验证整数除以分数同样适用于分数除以分数需要用到哪些旧知识?

生:商不变的性质

师:对,你怎么这么聪明!你怎么想到的?

生:两个数互为倒数,相乘是1,乘等于1,所以除以,用乘。

师:还需要用到哪些知识?提示:分数除法就要用到分数与除法的关系?

生:a÷b=b分之a,b不等于0

师:太棒了,商不变的性质用文字说明一下吗?

生:被除数和除数同时乘或除以不为0的数,商不变。字母表达式里的C表示什么(相同的倍数)

师:还有除数的性质

知识链接:

1.分数与除法的关系:b分之a=a÷b,b不等于0

2.商不变的性质:a÷b

=(a×c)÷(b×c)

=(a÷c)÷(b÷c)【c≠0】

3.除法性质的扩展应用:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

生:A除以B除以C等于A除以B乘C的积

师:还有除法性质的逆运算,还有性质扩展。

请同学们利用这些知识链接小组合作完成学习单上的第二部分内容

老师巡视,抽取样本(独立完成时间:1分25秒。小组合作时间:3分钟)

师:同学们想出验证方法

生1:根据商不变性质验证(附:验证方法)

师:说的特别好,为什么。没想打到你们验证出来,我在备课时想到一种验证方法,谁看懂老师的方法?结合每一步说一说运用了什么?

指名回答

师:分数与除法关系及除法性质应用这些步骤要为了说明什么?

生:一个数除以另一个数等于这个数乘另一个数倒数

(三)探究分数除法法则

师:整数除以分数对分数除以分数同样适用。昨天和孟老师学习分数除以整数,今天学习分数除以分数,其实这些都是分数除法,所以算法及算理是相同。用一句话总结分数除法算法法则、

生:除以一个数等于乘这个数倒数

师:计算分数除法转换为分数乘法计算

虽然我们只有一节课的缘分,但是你从我这里学习的不是有限的知识,而是学习数学的思想方法、习惯。我有一个习惯,把数学文字用哪个字母表达出来。现在请同学们用字母表达式表达分数除法的计算法则。

生:a÷b=a×。

师:对b做说明

生:b不等于0

师:我们接下来进行一场实战演习。指名读学习指南。老师巡视

(学生完成时间:3分钟10秒小组讨论时间:5分钟)

师:出示学生样本,请学生讲一讲填表过程

生:根据除数特征填表,除数大于1,商小于被除数,除数等于1,商等于被除数,除数小于1,商大于被除数。

师:解释一下字母表达式。

存在疑问:

1.只能用ABC表示吗?(任意)

2.字母只能代表分数吗(分数,小数,整数)

师:计算分数除法注意什么?

生:除以一个数要变成乘这个数的倒数。

师:总结:变-不-变(除号变乘号除数不变不除数变倒数变)

这有一道题,说思路

总结:小数,分数在一起,解决策略是什么?

生:小数变分数

三、课堂总结:不管计算加减乘除,先同意数的形式,再计算。

你们不仅凭自己收获数学知识,还掌握数学方法思想解决策略。同学们你们太棒了!

分数除法单元计划 第4篇

内容:

本册教科书第28页例2和练习八第1~4题。

教学目的:

使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

教学过程:

一、复习

1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

1/5、3/4、7/16、9/9

2、口算下面各题。

1/6÷3、4/5÷2、3/8÷6、6/7÷2

提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

3、解答应用题。

一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

指定一名学生列式解答。

二、新课

揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

1、出示例题。

一辆汽车小时行驶18千米,1小时行驶多少千米?

提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

指名列出算式,教师板书:18÷。

2、教学整数除以分数的计算方法。

教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

提问:图上哪一段表示小时行驶的路程?(教师在图上左边的'一份上面注明“小时行驶?千米”。)

提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)

提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

18÷==45(千米)

写出答案“答:汽车1小时行驶45千米。”

3、引导学生小结。

“整数除以分数,等于整数乘上除数的倒数。”

三、看教科书中新课内容后试算

全体学生独立计算“做一做”中的练习题:

12÷24÷

集体订正计算过程及结果,并提问一个数除以分数的法则。

四、课堂练习

在练习本上计算练习八第1、2题,然后订正计算结果。

五、总结

今天学习了什么新知识?

整数除以分数的计算法则是什么?

计算整数除以分数应注意什么?

六、布置作业

1、阅读教科书第28~29页的内容。

2、在练习本上做练习八第3、4题。

分数除法单元计划 第5篇

教学目标

1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

教学重点、难点

1、理解掌握分数与除法的关系。

2、会对假分数与带分数进行正确互化。

教学过程

活动一:创设情境,引导探索。

师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮xxx同学分一分蛋糕吗?

生:愿意!

师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

师:大家拿出练习本来计算这个商是多少?

生:3(1)

师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

即:1÷3=3(1)(个)

答:每人分得3(1) 个。

活动二:剪一间,拼一拼。

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的`同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]

④列一列:怎样用算式表示分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)

答:每人分得4(3) 张。

观察刚才所得结果:

1÷3=3(1) 3÷4= 4(3)

讨论、感知关系

讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

被除数÷除数= 被除数/除数

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

学生回答,师板书:a÷b= a/b

师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

生:不可以,因为这里的b≠0

师:左侧b≠0,那么右侧的b是否可以是0?为什么?

师:讨论完后,教师用红色粉笔标上: b≠0

活动三:总结提升,归纳关系。

1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

2、判断:“分数就是除法,除法就是分数”这句话对不对?

活动四:课堂检测(一)

1、填空:课本P39试一试1。

2、用分数表示下面各式的商。

1÷4= 3÷4= 8÷3= 7÷3=

1÷7= 13÷4= 5÷2= 4÷9=

活动五:假分数带分数互化。

师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

生:小组讨论思考

师:以7/3为例讲解,课本P39 T 2、3

师生共同总结互化方法。

1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

活动六:课堂检测(二)

课本P40 练一练 的2、3。

课后作业

用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

分数除法单元计划 第6篇

教学内容:

苏教版五年级下册第四单元例2、例3及相关练习

教学流程:

一、复习旧知,导入新课

1.回顾旧知

回忆:同学们在以前的学习中,认识了哪些数?(整数、小数、分数、自然数、正数、负数……)学过了哪些运算?(加、减、乘、除)上节课我们认识了分数的意义,那么分数的本质和我们学过的运算之间有没有什么联系呢?今天就让我们一起来研究。

提问:对于3/4这个分数,你有哪些认识?

预设:

①把单位“1”平均分成4份,表示这样3份的数。

②分数单位是1/4,3个1/4就是3/4。

③这个分数比1少1/4。

2.激疑引新

过渡:分数在我们生活中也会经常用到。请看,我们学校五年级同学前段时间春游了。午餐时间,同学们正在平均分饼吃呢。(出示情境图)

提问:瞧!这里有四组同学,每组都是4个人,每个桌上都有一盒饼。那么,每人分得自己桌上饼的几分之几?你是怎么想的?

预设:

①每人都是分得自己桌上饼的1/4。

②都是把单位“1”平均分成4分,每人分得这样的1份。

追问:既然这些小组分的都是总数的1/4,那每人分得的块数会一样多吗?

预设:①一样多。②不一样多。

过渡:到底是不是一样多,让我们一起来分分看。

【设计意图:课始通过必要的复习,激活相关旧知,为新课学习做好迁移准备。然后借助简单的生活情境,在巩固学生对分数的“份数”定义认识的同时,结合单位“1”——饼的总数变化,引导学生初步感知总数与份数、每份数之间的关系,产生计算每个小组每人分得块数的需求,也为后面理清“每人分得多少块”和“每人分得这些饼的几分之几”,即“量”和“率”这两个容易混淆的问题进行了适当的铺垫。】

二、操作探究,形成概念

1.初步感知

提问:我们先打开第一个盒子,看每人分得多少块?你是怎么想?

交流:8÷4=2(块),把8块饼平均分成4份,每份就是2块。

提问:再打开第二个盒子。这时总数的1/4表示多少块呢?

交流:4÷4=1(块)

追问:为什么刚才都可以用除法来计算呢?(平均分)

过渡:原来我们要把这些饼平均分,所以用除法计算。

(板书:饼的块数÷人数=平均每人得到的块数)

提问:我们来打开第三个盒子,现在只有1块饼,你会列式吗?

交流:1÷4

追问:那每人分得多少块呢?你是怎么想的?

预设:①块。②1/4块。

过渡:我们在平均分的时候,有时候可以得到整数商,有时候不能得到整数商,于是就产生了小数和分数。

演示:让我们借助图形来验证一下。

(板书:1块的1/4是1/4块)

追问:同学们刚才这三桌同学都在平均分饼,每人都分得自己桌上饼的1/4,为什么有人分得2块,有人分得1块?有人分得1/4块呢?

小结:是呀,虽然都是总数的1/4,但是总量不同,每一份的具体块数也不同。

【设计意图:从商是整数的除法,演变到商是几分之一的除法,学生通过已有的除法经验,不难想到计算的.方法;而当总块数是1块饼的时候,学生也很容易从分数意义的角度,用除法推想出分得的结果。从这两个角度出发,学生很自然地就能在1÷4和1/4之间建立起相等的关系。基于这样的认识,再借助实物建立起1/4块的表象,同时渗透度量的思想,为后面的教学做好孕伏。】

2.操作比较

提问:打开第四小组的盒子。盒子里有3块饼,还是分给4个人,平均每人分得多少块呢?可以怎样列式呢?

预设:3÷4

实验操作:能不能利用我们上面分一块饼的方法,用合适的数表达把3块饼平均分成4份,每人分得的结果?

(小组合作,动手分一分)

交流①:我们是一个一个分的。

(学生上台操作分饼)

追问:你是先得到什么再得到3/4块的?

(教具演示)

过渡:还有哪个组分的过程和他们不一样?

交流②:我们是3个饼叠在一起分的。

(学生操作演示)

回顾:刚才在分的过程中把几块饼平均分成了4份?每人得到了这3块饼的1/4,那么每人分得多少块呢?你能把每人的1份拼在一起吗?现在知道3块饼的1/4也就是3/4块。

比较:刚才在分的过程中有同学是一块一块分的,有同学是3块一起分的,分法虽然不一样,但它们之间有什么相同地方?哪一种分得更快一点呢?

(学生以4人为一组,讨论)

讲述:把3块饼平均分成4份,我们可以用3÷4等于3/4块。

3.变式延伸

提问:假如第四组又来了一个小朋友,你能算出现在第四组平均每人分得多少块吗?

思考并交流:3÷5=3/5(块)

问:是不是真的等于3/5块呢?我们可以怎么验证?(在脑中分一分)你是怎么想的?(学生说说自己的想法,课件演示)

延伸:如果3块饼平均分给7个小朋友,每人分得多少块?平均分给8个小朋友呢?100个小朋友呢?

【设计意图:学生通过动手操作、观察、思考以及交流、讨论、汇报等数学活动,一方面可以理解分数是由多个分数单位合成的,另一方面也理解了两种分法的关系。同时从3/4到3/5再到3/7、3/8、3/100……一系列变式延伸,让学生充分体会到了分得的块数与饼的总量和人数之间的关系,在此基础上分数与除法的关系模型已初步建立。】

4.勾连关系

提问:通过今天的研究,黑板上有这么多分数和除法算式,仔细观察,你能用一句话来概括出分数于除法之间的关系吗?

交流并翻转卡片得到板书:

追问:字母关系式中有什么要注意的呢?(b不等于0)

联系:通过刚才的学习,我们指导除法的商都能用分数来表示,那我们以前学习的除法能不能用分数来表示呢?你更喜欢哪种?

小结:以前学习的整数除法的得数也可以用分数表示,有时用整数简便,有时也用小数表示。我们一起学习了分数和小数之间的关系,今天又一起研究了分数与除法之间的关系。

(板书:分数与除法的关系)

【设计意图:从直观到抽象,从操作到想象,这是一个不断递进的过程。有了前面慢节奏的初步感知和深入交流,才会为此环节建立真正的概念模型打下基础,同时学生对除法和分数之间的关系有了进一步的理解,为今后解决实际问题和灵活应用积累了丰富的数学活动经验。】

三、练习应用,形成能力

1.巩固练习

(学生独立思考,同桌交流)

2.应用练习

(学生独立思考,全班反馈)

追问:在互化时你的依据是什么?后面一题为什么不用小数表示?

(看来分数有时能弥补小数的不足)

3.拓展练习

(学生看图,独立完成并口述交流。)

追问:仔细观察这几题,你有什么发现?什么变了,什么没变?

【设计意图:通过三个层次的练习,帮助学生巩固了分数与除法关系的知识。从数学问题到数量问题再到生活问题,层层递进。最后把前后知识勾连,形成知识体系。】

四、全课总结,感悟思想

提问:通过今天的学习,你有什么收获?我们是怎样研究分数与除法之间的关系的?

板书设计

总结:分数与除法之间有着密切的联系。计算除法的商,有时候我们可以用像以前一样的整数或小数来表示,有时候可以用类似今天这样的分子比分母小的分数来表示。以后我们还会碰到分子比分母大的分数。(联系板书内容)像这里的8/4块、1/4块……这样的分数表示的都是具体的数量(板书:数量),我们再来看,当平均分成4份时,每人分得1/4;那平均分成5份、7份呢?b份呢?像这里的1/4、1/5、1/7、1/b表示的是部分与整体的关系(板书:关系)。关于分数与除法之间的联系与应用,今后我们将进一步学习。

教学点评

前不久,在苏州市吴中区小学数学课堂教学比赛中,独墅湖实验小学朱勤老师设计执教的这节《分数与除法的关系》,以其整体化的教学设计与充满活力的课堂教学,一举获得一等奖第一名。笔者观察了这节课的教学流程与教学设计意图,有如下三点体会:

1.注重数概念与运算的一致性

20xx版数学新课标在“课程理念”中特别强调“设计体现结构化特征的课程内容”,并在“数与代数”学习领域提出“感悟数的概念本质上的一致性”和“体会数的运算本质上的一致性”。在第三学段的“内容要求”中则指出“结合具体情境理解整数除法与分数的关系”。因此,本课可以看作是探索分数概念与除法运算本质上一致性的一次积极尝试。

经过了三年级两次认识分数,本单元是小学阶段系统教学分数知识的开始。在学生学习了分数意义之后,首先沟通分数与除法的关系,然后进一步学习分数的基本性质、分数四则运算和混合运算以及运用分数解决实际问题等内容。本课主要学习分数与除法的关系,这对完善分数概念十分重要。利用分数与除法的关系,不仅能把分数化成整数或小数,而且与除法意义有关的知识及其应用,就能向分数迁移。

朱老师把本课的两个例题进行了整体化设计。通过生活化的情境展开,分别设计了四个小组进行分饼活动:从总量是8块、4块、1块、3块,分别平均分成4份,求每份是多少块。学生在用除法列式计算时,分别列出8÷4=2块,4÷4=1块,1÷4=1/4块,3÷4=3/4块。在直观演示、动手操作和沟通旧知的过程中,逐渐把除法与分数建立起了内在联系。

2.注重学生学习方式的多样性

20xx版数学新课标十分重视学习方式的改善,指出“认真听讲、独立思考、动手实践、自主探索、合作交流是学习数学的重要方式”。这就启示我们在课堂教学时,要特别注重学习方式的多样性。有效的数学学习,是根据所学知识的属性与儿童认知的规律而展开的,因此绝不是某一种学习方式就能独霸天下。对于陈述性知识,应该以有意义接受学习为主;而程序性知识,则需要让学生进行探究发现式学习;至于策略性知识,则需要充分进行体验与对比。

本课的学习难点是例题3,即把3块饼平均分给4个小朋友,求每人分得多少块。在例题2教学时,通过整体化情境设计和教学,学生已经初步建立起除法与分数的基本模型(都是平均分,被除数相当于分子,除数相当于分母,商可以用分数表示),因此学生列出除法算式3÷4并不困难,而难的是从操作中得到每份分得的饼是3/4块。朱老师在这个环节设计了动手实践、自主探索与合作交流的学习方式,在学生汇报思考过程时针对两种典型的分法:有的学生是1块1块地分,每次得到1/4块,3次分得3个1/4块,合起来是3/4块;有的学生把3块饼叠起来同时分,每人分得3块的1/4,合起来也是3/4块。然后再进行对比与勾连,体会除法式子与分数各部分的对应联系,感悟用除法计算与用分数表达的内在一致性。

3.注重学生核心素养的生长性

20xx版数学新课标已经发布,这标志着课堂教学进入了核心素养导向的新时代。在小学阶段的核心素养主要表现有数感、量感、符号意识、推理意识、几何直观、空间观念、运算能力、数据意识、模型意识等方面。结合本课的教学,应该让学生在数感、符号意识、推理意识、模型意识、运算能力等方面有所发展。笔者以为,核心素养是一种看不见、带得走、用得上的关键能力和必备品格,是无法由教师直接传递给学生的,而是需要学生通过学习过程感悟,逐步生长出来。

朱老师在教学过程中,既没有由老师一讲到底地灌输,也没有完全放任学生无序地操作,而是精心组织了具有生长性的学习内容,精心设计了体现学生主体性的学习流程,在操作、观察、分析、比较中,让学生找到分数与除法的对应联系。本来,分数是一种数,而除法是一种运算,要真正沟通数概念与数运算的内在关系,需要在丰富的操作活动中经历知识发生和发展的过程,体验除法与分数之间的联系与区别,感悟数与运算的对应性与一致性。尤其是,朱老师依据了“问题情境——列出算式——分出得数——体验等式”的教学线索,让学生在对分数概念感悟和对除法运算的推演中理解两者的内在关联,初步建立起对应性的数学模型,并在归纳中概括,在转化中对应,在推理中建模,进而对分数的意义和除法的运算达到深度理解水平,为今后探索分数的基本性质和解决分数实际问题打下良好的素养基础。

分数除法单元计划 第7篇

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的`分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页_做一做_

分数除法单元计划 第8篇

教学目标:

1、使学生经历整数除以分数计算方法的过程,理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

2、使学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增加学好数学的信心。

教学重难点

理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

教学过程:

一、回顾整理,熟悉法则。

1、口算。

9/10÷3=4/7÷4=3/10÷1=3/5÷6=

口答出答案,并说出得到答案的具体过程。分数除以整数:是用分数乘整数的倒数。

2、梳理相关的知识。

分数除以整数的计算法则:分数除以整数,只要用分数乘以整数的倒数。

举例说说分数除以整数的意义:把9/10平均分成3份,每份是多少?

二、激活记忆,引出课题。

1、出示课件。

幼儿园李老师把4个同样大的饼分给小朋友。

每人吃2个,可以分给几个人?(口答答案和算式)

每人吃1个,可以分给几个人?(口答答案和算式)

每人吃1/2个,可以分给几个人?(口答答案和算式)

板书:4÷1/2=8(个)

2、观察算式,引出课题。

观察算式,揭示课题——整数除以分数。

三、探究算法,形成法则。

1、交流得数8个人的想法。

分一分,让学生动手分一分,体会8个苹果的由来;用算式表示4×2=8;比较算式4÷1/2=8和4×2=8,观察它们之间的联系,形成整数除以分数的算法,4÷1/2=4×2=8。

2、变换数据,增加感性认识。

每人吃1/3个,可以分给几个人?每人吃1/4个,又可以分给几个人?

先列算式,再在图中分一分得出结果,最后把算式写完整。

4÷1/3=4×3=12(个)

4÷1/4=4×4=16(个)

3、出示课件

有1根2米长的绳子

(1)截成每段1/2米,可以截几段?

(2)截成每段1/3米,可以截几段?

(3)截成每段长2/3米,可以截几段?

列出算式;在图中分一分,写出结果;思考计算方法,形成法则后再计算。

4÷2/3=4×3/2=6(段)

4、交流,形成计算法则。

小组交流整数除以分数的计算法则,再班级交流,形成整数除以分数的计算法则:整数除以分数,只要整数乘分数的倒数。

四、巩固练习,形成技能。

1、完成练一练。

12÷2/3=12×()/()9÷6/7=9×()/()

10÷2/5=8÷2/3=3÷6/7=12÷8/7=

2、8÷6/75/12÷3

除以一个数(0除外),等于乘这个数的倒数。

3、课堂作业。

6÷1/42/3÷1/54/9÷2/38/3÷41/3÷3/45/6÷1/43/7÷75/7÷7/5

4、1壶水可以装几杯?

五、课堂总结

本节课你有什么收获?

教学反思:

1、创设生活情境:

数学知识来源于生活。通过创设幼儿园的老师分饼的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

2、注重自主探索:

学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会_除以分数_与_乘这个数的倒数_之间的关系。

3、经历知识的.形成:

数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如4÷1/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法.

4、练习循序渐进:

设计练习时,我在算一算里安排有层次的计算,让学生先算简单的不需要约分,再算需要约分的,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。

分数除法单元计划 第9篇

教学目标

(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

教学重点、难点

重点、难点:理解分数与除法的关系。

教具、学具准备

教学过程

一、复习铺垫

1、口述下列分数的意义:

1/44/57/9

2、口答列式计算。

(1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?

120÷12=10(人)

(2)把12米长的钢管平均截成6段,每段长多少米?

12÷6=2(米)

归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。

如果把(2)题的12米改成1米,如何列式?

1÷6

它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

出示课题“分数与除法的关系”。

二、教学新知

1、教学例2。

把1米长的钢管,平均截成6段,每段长多少米?

(1)边作图边讲解。

“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的`长。所以

1÷6=1/6(米)

(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)

2、教学例3。

把3只月饼平均分成4份,每份是多少?

教学过程

(1)读题后指名学生列式:

3÷4

(2)边讲解边出示图式

(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。

得出3÷4=3/4(只)

从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

3、归纳分数与除法的关系。

(1)观察例2、例3的算式。

1÷6=1/6(米)

3÷4=3/4(只)

(2)思考分数与除法有什么关系?

(3)结论:

被除数÷除数=被除数/除数

(4)练一练:

课本P75第1题。

把分数改写成除法算式。

4/7=()÷()21/25=()÷()

14/27=()÷()7÷()=7/()

讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?

结论:在除法中,除数不能为零。

在分数中,分母不能为零。

三、练习反馈

1、7分米是几分之几米?

23分钟是几分之几小时?

学生独立练习后集中反馈,说一说思考过程。

“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。

把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。

2、练一练:

课本P76第5题填在书上。

四、课堂练习

课本P76第2、3、4题。

五、课后作业《作业本》

学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。

分数除法单元计划 第10篇

一、教学内容:分数与除法,教材第65、66页例1和例2

二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点:1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:圆片、多媒体课件。

五、教学过程

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=(块)

(三)教学实施

1.学习教材第65页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

( 3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

老师根据学生回答。(板书:1 ÷ 3 =块)

(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

通过这样的练习,为下面的操作打下基础。

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2 。

( 1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2)3 ÷ 4的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 _ ?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个学生。每个学生分得3个,合在一起是块饼。

方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

( 3)加深理解。(课件演示)

老师:块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

现在不看单位名称,再来说说表示什么意思?(表示把单位“1 “平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)

( 4)巩固理解

①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?()

借助学具分饼、想象分的.过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

4.归纳分数与除法的关系。

( l)观察讨论。

请学生观察1÷3 =(块)3÷4 =(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2)思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3)用字母表示分数与除法的关系。

老师:如果用字母a 、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13==()÷()()÷24=9÷9=÷3=n÷m=(m≠0)

②1米的等于3米的( )

③把2米的绳子平均分3段,每段占全长的( ),每段长()米。

解释÷3=是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的()

②1米的与3米的一样长。()

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。()

④把45个作业本平均分给15个同学,每个同学分得45本的。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

六、教学反思:

七、教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

八、设计意图:

1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法单元计划 第11篇

一、求一个数的倒数。

1、出示数据。

1/91113/512/3。

2、求出以上数的倒数。

91/115/1313/2。

1的倒数是它本身。

二、计算分数乘除法。

1、出示计算题。

8×1/43/4÷44/9÷3/24/5÷44/7÷7/4。

2、计算以上各题。

三、解决方程。

1/9x=2/32/3x=54。

7/4x=358x=42。

四、解决问题:

1、练习三第4题。

2、练习三第5题可以用解方程的方法也可以用算术方法解决问题。

3、完成第6-9题。

方法同上。

4、完成第10题。

学生可能有不同的'解决问题的方法,可以根据分数除以整数的意义进行解答。

1/3÷3=1/9也可以列出方程进行学生活动。

学生观察数据。

独立写出各数的倒数。

然后交流纠正。

学生看清乘除法,然后独立计算,进行交流,除以一个数是乘这个数的倒数。

学生独立解决。

指名板演。

集体交流纠正。

学生认真审题,用方程解决问题。

说一说解设。

然后全班交流。

学生仔细审题,找出数量关系,列成计算然后进行交流。

同上。

1÷1/9=9(天)。

解答:1/3x=3。

x=9。

板书设计练习三。

1/9×9/111×1/11。

3/4÷4=3/4×1/4=3/16。

解:设:校园总面积为xm2。

3/40x=660。

x=8800答:校园总面积为8800m2教学反思。

学生计算掌握的可以,但是把分数乘法、分数除法应用题防在一起,有时还是混淆。这大概是不十分理解吧!

分数除法单元计划 第12篇

教学设想:

1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

教学目标:

1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

2、培养学生动手操作、合作交流和灵活运用知识的能力。

3、通过学习,培养学生转化的数学思想和勇于探索的精神。

教学重点:

理解分数与除法的`关系。

教学难点:

具体体会每一个商的由来和表示的含义。

教学过程:

一、感知关系

1、问题:把6米长的绳子平均分成3段。每段长多少米?

把1米长的绳子平均分成3段。每段长多少米?

提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

板书:被除数÷除数=被除数/除数

二、探究关系

1、验证关系

(1)通过动手操作验证

出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

反馈验证

引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

板书:3÷4=3/4

(2)运用分数意义验证

师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

出示例[2]:17分是几分之几小时?

引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

1÷60=1/6017÷60=17/60(小时)

引导小结:分数与除法之间的关系,还可以用来转化名数。

2、揭示关系

师:通过刚才的验证,你得出了哪些结论?

①两个数相除,当商不是整数时,可以用分数来表示。

②被除数÷除数=被除数/除数。

师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

被除数

是一种运算

师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

三、巩固关系

1、强化分数与除法的关系。

①P、822

②(P、824)

③填上合适的分数8cm=()m13g=()kg15dm2=()m229分=()小时

④在括号里填上合适的数()÷()=5/8,3/5=()÷(),()/()=()÷()

2、比较练习,完成P、823

①学生选择条件,列式解答。

②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

四、总结提升

师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

质疑:5/8这个分数表示的意义是什么?还可以怎样理解?

分数除法单元计划 第13篇

教学内容:

人教版五年级下册数学第65-66例1、例2

教学目标:

理解掌握分数与除法的关系。

教学准备:

4张大小完全相同的圆形纸片。

教学过程:

一、游戏导课

《分蛋糕》老师口述题学生拍手回答。

1)8个蛋糕平均分给2个人,每人分几个?

2)4个蛋糕平均分给2个人,每人分几个?

3)2个蛋糕平均分给2个人,每人分几个?

4)1个蛋糕平均分给2个人,每人分几个?

在老师口述第4)题后学生无法拍手回答,则抢答半个或个,师板书:个。老师问:怎样列式?学生答后老师板书:1÷2,此时老师指着板书1÷2=个。由此导入新课并板书课题。

二、学习新课

1、学习例1.把1个蛋糕平均分给3个人,每人分得几个?

1)学生口答老师板书个。

2)怎样列式?学生口答老师板书:1÷3=(个)

3)等号左右两边为什么相等呢?(老师引导分别说出1÷3和个表示的意义,并根据图示使学生明白:它们表示的是同一涂色部分,所以相等)

4)练习:把1块蛋糕平均分给5人,每人得几个?老师逐次口述,将划线部分变为平均分给10人、15人……全班同学呢?

2、学习例2:把3块蛋糕平均分给4人,每人分得多少块?

(1)列式:生答师书:3÷4

(2)动手分一分:学生拿出提前准备好的3张相同的'圆形纸片,小组合作分一分,每人分得3块蛋糕的,就是1块蛋糕的,就是块。

(3)汇报:怎么分?每人分得多少块?

(4)同桌互说分法,重点理解:3块的=1块的

(5)练习:

把2块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把3块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把5块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

把10块大蛋糕平均分给现在教室里所有的人,每人能分得几块?

3、归纳分数与除法的关系

(1)观察板书;1÷3=(块)3÷4=(块)我们发现用分数可以表示两个整数相除的商,讨论:分数与除法有什么关系?(生答师强调用“相当于”描述,并板书)

(2)练习:

5÷8==()÷()

11÷9==()÷()

(3)判断对错,并说说为什么。

分数就是除法,除法就是分数。()

(4)用字母表示关系。(学生试写并板演)

a÷b=(b≠0)

三、全课总结:

你学会了什么?

四、作业:

P67(1-3)

五、板书设计:

分数与除法

被除数

被除数÷除数=_________________(除数不为0)

a÷b=(b≠0)

分数除法单元计划 第14篇

教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

教学目标:

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学过程:

一、复习引入

1.列式,说说数量关系。

小明2小时走了6km,平均每小时走多少千米?

速度=路程÷时间

2.填空。

2/3小时有()个1/3小时,1小时有()个1/3小时。

3.口算,说说分数除以整数的计算方法。

(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

4.引入课题。

我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

板书课题:一个数除以分数。

二、解决问题,发现算法

1.理解题意,列出算式。

(1)出示例3。

(2)学生读题,理解题意。

(3)列出算式,说出列式根据什么数量关系。

板书:2÷(2/3)(5/6)÷(5/12)

2.探索整数除以分数的计算方法。

(1)2÷(2/3)如何计算呢?让我们画出线段图看看。

(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?

(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

(4)根据学生的回答把线段图补充完整,板书计算思路。

先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

再求3个1/3小时走了多少千米,算式:2×(1/2)×3

(5)找出计算方法。

板书:(乘法结合律)

现在会算了吗?说说2×1/2是图上的.哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

强调:被除数没有变,除号变乘号,除数变成了它的倒数。

(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

板书,学生齐读。

3.探索分数除以分数的计算方法。

(1)让学生尝试计算5/6÷5/12。

我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

(2)学生汇报,教师板书:

(3)为什么写成×(12/5)?

(4)怎样验证这种计算结果是正确的?

学生可能回答:

①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

再求12个1/12小时走了多少千米,算式是5/6×1/5×12

②用乘法验算。

(5)回答“谁走得快些”。

(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

让同桌学生相互议一议,再指名回答。

(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

强调:除以一个不等于0的数。

齐读法则。

三、巩固练习

1.口算。(采用口算对折卡片)

(1)不能约分的2÷3/5=1/3÷2/5=

(2)能约分的3÷3/4=2/7÷6/7=

2.完成课本第31页“做一做”第1题,填在书上。

第2题,写在课堂练习本上,写出过程。

3.直接写出得数。

1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

四、师生共同小结

1.这节课我们学习了哪些知识?

2.一个数除以分数的计算方法是什么?

五、布置作业(略)

分数除法单元计划 第15篇

教学目标:

1、使学生理解两个整数相除的商可以用分数来表示。

2、使学生掌握分数与除法的关系。

3、培养学生的应用意识。

教学重难点:

1、理解归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

教学准备:

课件、圆片

教学过程:

一、复习引入

师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)

课件出示练习题:

(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?

(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?

(3)把1包饼干平均分给2个人,每人分得(1/2)包。

引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)

二、探究新知

课件出示习题:

(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。

出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?

师:这道题该怎样列式呢?(学生列式,师板书:1÷3)

师:1÷3表示什么意思?

生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。

师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

生:1/3个。(师板书)

师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3。

师:请大家看,每份都是1/3,每个人得到的是多少个蛋糕呢?

生:1/3个。

师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是个。

教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)

指名读题

师:谁能列出算式?

生:3÷4(师板书)

师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的'。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

小组操作,教师巡视指导。

师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

(小组边汇报,边演示)

小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

师:你能用一个式子表示一下吗?

小组1:1÷4=1/4块。

师:好。请接着汇报吧。

小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

师:还有没有和这组方法不同的?

小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

学生小组讨论

生:我们发现,被除数就是分子,除数就是分母。

师:你能试着表示出来吗?

生:被除数÷除数=被除数/除数(师板书)

师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

生1:a÷b=a/b(师板书)

生2:老师,我认为还要写上b≠0。

师:为什么b≠0?

生:因为b表示除数,除数不能为0。

生:分数的分母也不能等于0。

师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

学生观察算式,思考

生:可以。比如3/4=3÷4。

课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。

师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

请学生观察黑板算式,和同学讨论。

学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

三、巩固练习

1、用分数表示下列算式的商

7÷13=3÷11=8÷5=9÷16=m÷n=

2、试一试

()÷7=4/71÷()=1/37/9=()÷95/8=()÷()

3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

4、填空(练习十二3题)

5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

四、全课总结

分数除法单元计划 第16篇

教学内容:

人教版五年级数学下册第四单元P49l。

教学目标:

1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。

2.使学生正确理解和掌握分数与除法的关系

3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。

教学重难点:

1.理解和掌握分数与除法的关系。

2.用除法的意义理解分数的意义。

教学具准备:

课本主题挂图,圆形纸片(4—5张)。

教学过程:

一、创设问题,复习导入

1.填空。

6表示( )。

7(2)的分数单位是( ),它有()个这样的分数单位。 10(1)

2.问题引入

师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法

二、探索研究,学习新知

(一)教学例1

1.出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。

2.讨论:1 除以3结果是多少?你是怎样想的.?

3.汇报讨论结果:

生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333

教师根据学生回答板书:

1÷3 =

(二)教学例3

1.出示主题挂图,读题后,引导学生列出算式:3÷4。

2.指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。

3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。

方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个

个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。

3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到

所以每人分得3块。(如图)

板书:3÷4 =

4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?

指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?

可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。

分数除法单元计划 第17篇

单元教材分析

本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

单元教学目标

1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

4、让学生在具体生动的情景中感受学习数学的价值.

单元教学重点

1、分数除法的计算;

2、分数除法问题的解答;

3、比的意义和基本性质的理解与运用.

单元教学难点

1、理解分数除法计算法则的算理;

2、比的应用.

1、分数除法

教学目标

1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

2、使学生理解整数除以分数的算理,掌握一个数除以分数的`计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

教学重点

1、理解分数除法的意义与整数除法的意义相同。

2、学会分数除以整数的计算法则,并能应用法则正确计算。

3、一个数除以分数的算理。

4、掌握分数除法的统一法则。

教学难点

1、学会分数除以整数的计算法则,并能应用法则正确计算。

2、引导学生推导出整数除以分数的方法。

3、对于一个数除以分数的算理的理解。

第一课时分数除法的意义和分数除以整数

教学过程:

一、创设情景导入:

同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

二、新知探究:

(一)分数除法的意义

1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

(二)分数除以整数

1、小组学习活动:

问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

[活动要求]

①先独立动手操作,再在组内交流,

②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

2、汇报学习结果:

3、学生独立阅读教材

4、归纳总结:这节课你们学会了什么?

指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

三、巩固与提高

①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

四、课后作业

练习八第1、2、3题

五、板书设计:

分数除法的意义和分数除以整数

例1.100×3=300(ɡ)1/10×3=3/10(㎏)

300÷3=100(ɡ)3/10÷3=1/10(㎏)

300÷100=3(盒)3/10÷1/10=3(盒)

例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

4/5÷3=4/5×1/3=4/15

分数除法单元计划 第18篇

教学目标

1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

教学重点、难点

1、理解掌握分数与除法的关系。

2、会对假分数与带分数进行正确互化。

教学过程

活动一:创设情境,引导探索。

师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮xxx同学分一分蛋糕吗?

生:愿意!

师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

师:大家拿出练习本来计算这个商是多少?

生:3(1)

师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

即:1÷3=3(1)(个)

答:每人分得3(1)个。

活动二:剪一间,拼一拼。

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:出示例2:把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份]

③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几?[课件显示拼好后的3/4个饼]

④列一列:怎样用算式表示分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4=4(3)(张)

答:每人分得4(3)张。

观察刚才所得结果:

1÷3=3(1)3÷4=4(3)

讨论、感知关系

讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

被除数÷除数=被除数/除数

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的`这种关系怎样表示?

学生回答,师板书:a÷b=a/b

师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

生:不可以,因为这里的b≠0

师:左侧b≠0,那么右侧的b是否可以是0?为什么?

师:讨论完后,教师用红色粉笔标上:b≠0

活动三:总结提升,归纳关系。

1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

2、判断:“分数就是除法,除法就是分数”这句话对不对?

活动四:课堂检测(一)

1、填空:课本P39试一试1。

2、用分数表示下面各式的商。

1÷4=3÷4=8÷3=7÷3=

1÷7=13÷4=5÷2=4÷9=

活动五:假分数带分数互化。

师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

生:小组讨论思考

师:以7/3为例讲解,课本P39T2、3

师生共同总结互化方法。

1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

活动六:课堂检测(二)

课本P40练一练的2、3。

课后作业

用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

分数除法单元计划 第19篇

一、说教材:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

二、说教法和学法:

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

三、教、学具准备。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

四、说教学过程:

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?

这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的.话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

五、说板书:

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

分数除法单元计划 第20篇

教学目标

1、理解以“和倍”问题为基础的分数应用题的解题思路、会列方程解答此类应用题。

2、培养学生的迁移类推能力。

3、培养学生运用所学的知识解决生活中的实际问题的能力。

教学重点

理解应用的数量关系,找到题目中的等量关系。

教学难点

找准题中的等量关系。

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入

上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的.年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1、老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了。

2、板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位”1“,画出线段图。

4、分层指导。

思考:

(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师,杨莹的岁数用含有的式子怎么表示?

5、学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3、饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的、白兔和黑兔各有几只?

1、读题,理解题意弄清谁是单位”1“,画出线段图。

2、小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?

3、学生练习。

4、学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是?

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只。

4、教师提问:这道题还可以怎样列式?

18÷(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答。

1、商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2、商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为,另一个数就是几分之几,根据已知条件列出方程解答。

四、巩固练习

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1、李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

2、李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有x棵。

A、B、

C、D、

五、质疑总结

1、用方程解这类题的关键是什么?

2、用算术方法解答时应注意什么?

六、板书设计

分数除法应用题

解:设老师的年龄是x岁。

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁。

分数除法单元计划 第21篇

教学目标

知识目标:

体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点

整数除以分数的计算法则推导过程。

教学难点

理解一个数除以分数的计算法则的`推导过程

教学过程

一、创设情境导入新课

唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

二、自主探究合作交流

1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。

每2张一份,可以分成多少份?4÷2=2(份)

每1张一份,可以分成多少份?4÷1=4(份)

师:每1/2张一份,可以分成多少份?

学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

师:每1/4张一份,可以分成多少份?

学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

4÷1/4=16(份)

(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

生:一个数除以分数等于乘这个分数的倒数。

2、学生独立完成28页的“试一试”。

集体反馈,同桌之间订正。

师:通过刚才的计算你发现了什么?

生:一个数除以一个数(零除外)等于乘这个数的倒数。

三、课堂练习,巩固运用书本练一练

四、课堂小结畅谈收获

聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)

五、板书设计

整数除以分数

除以真分数商大于整数

整数除以分数

除以假分数商小于整数

除以1商等于整数

六、教学反思

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。

分数除法单元计划 第22篇

教学目标:

1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确的计算分数的除法。

2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

3、能很好的计算分数乘除混合运算的题目。

教学重点:

分数除法的计算的方法。

难点:

分数乘除的混合运算的运算的计算的正确率

教学过程:

一、复习回顾

小组讨论

1、怎么样来计算分数除法

请学生进行讨论,讨论好以后再请学生进行回答。

2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

请生说说你是怎么来理解这句话的`。

二、进行练习

1、做课本66的1

请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

学生做好了以后再请学生进行口答。

对于做错的题目,让请学生自己来分析下错误的原因是什么?

2、做第2题

前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

并请学生上黑板进行板演。

进行集体订正。

3、对比练习

1)城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

4、做66页第4题

请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

做好以后请学生进行板演

5、根据方程或算式,将应用题补充完整。

1)、120×3/8

(),苹果树的棵数是梨树的3/8,()?

2)、3/8x=120

(),苹果树的棵数是梨树的3/8,()?

3)、120+120×3/8

(),苹果树的棵数是梨树的3/8,()?

请学生独立的做,做好了以后请学生说说是怎么想的?

三、布置作业

做66页第5~7题

1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

在()里填上“>”“<”“=”

4/7×1/3()4/74/7×4/3()4/7

4/7÷1/3()4/74/7÷4/3()4/7

4/7÷1()4/74/7×1()4/7

先让学生独立思考,再说说判断的结果和理由。

2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

课后反思:

通过今天的复习,部分学生已初步感受到单位_1_的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数除法单元计划 第23篇

一、教学内容:分数与除法,教材第65、66页例1和例2

二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点:1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:圆片、多媒体课件。

五、教学过程:

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=(块)

(三)教学实施

1.学习教材第65 页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

( 3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 _ ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

( 3 )加深理解。(课件演示)

老师:4(3)块饼表示什么意思:

①把3块饼一块一块的.分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4 )巩固理解

① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

4.归纳分数与除法的关系。

( l )观察讨论。

请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2 )思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) ÷3=3() n÷m=()(())(m≠0)

②1米的8(3)等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

②1米的4(3)与3米的4(1)一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?