人工智能科普教育活动总结(合集6篇)

时间:2025-03-13 17:30:16 作者:admin

人工智能科普教育活动总结 第1篇

本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。??

一、兼顾课程内容的统一性和差异性??

人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。?

知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。?

同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。?

这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。

??二、实施分层次教学??

各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。?

本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。?

非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。?

给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。

??三、案例驱动,寓教于乐??

采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。?

例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。?

又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。?

在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。?

为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。?

此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。

??四、结语??

以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。?

人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。

参考文献?

[1]

蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.?

[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.?

[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.?

人工智能科普教育活动总结 第2篇

一、网站的构建

1.网站框架设计

我国高中阶段人工智能教育还处于起步阶段,据调查,全国已开设人工智能课程的中学不超过十所。事实上,对于人工智能这一前沿学科,大部分信息技术教师还缺乏足够的了解,因此对于该课程的开设也一直处于观望状态。考虑到人工智能教育的实际情况以及网站的主要对象,我们以高中信息技术选修课教材《人工智能初步》为基础,按教学内容设置和划分栏目,同时又围绕“学人工智能、教人工智能、用人工智能、机器人专题”四大专题进行内容重组。当然,网站的基本架构并非一成不变,它需要在实际应用中进行检验与修正,最终实现网站的完美架构。依据上述思路建构的网站基本框架如图1所示。

2.网站的栏目设计

新闻栏目以图文的形式人工智能发展的最新情况,这是激发并维持广大师生关注人工智能的基础,也是师生获取最新信息的窗口。子栏目“中国动态”“欧美动态”等分别介绍了各地区最新的人工智能信息,尤其是机器人产品的新闻。子栏目“会议论坛”,“比赛通知”为师生、参与比赛提供服务。

论文栏目是作为资源型网站的基础。子栏目“教学研究”主要面向从事人工智能教育的研究者和教师,探讨教学方法、分析教学案例、推荐教材和参考书,为更好的开展人工智能教学提供理论依据。子栏目“学习乐园”主要面向学生,展示活动实录、阐述学习感受,聆听专家意见,为更好的学习人工智能提供事实参考,教师也通过“学习乐园”来了解学生的所思所感所想。子栏目“赛事规则”介绍了各个地区和各级机器人比赛的一些规则,有利于师生更好的进行人工智能的教与学。

资源、视频、图库、酷站:这四个栏目是资源型网站的核心。尤其是资源模块中的子栏目“电子书刊”“教学课件”“人工智能软件”分别以不同的文件格式向师生提供教与学的资源,使其能快速准确地获取符合需求的资源,免去了在因特网上盲目搜索出现大量冗余信息的麻烦。网站整合了文本、视频、图片等多媒体信息,以丰富多彩的形式呈现资源,增强了网站的吸引力和信息的可阅读性。

爱问栏目是作为学习型网站的基础,也是本网站的一大特色。“爱问”是采用了模仿“百度知道系统”的程序设计,更注重知识的答疑解惑。我们将此栏目划分为“学人工智能”“教人工智能”“用人工智能”“机器人问题”四个子栏目,师生可根据各自的需要进行提问、回答问题、搜索问题等操作。同时,设立了积分制,激发师生提问和回答问题的热情。

用户中心栏目是学习型网站的核心。作为一个专题网站,必然要十分强调学习的功能。子栏目“网络书签”的功能可以使学习者记录自己所浏览过的或所感兴趣的网页,便于在下次登陆后继续学习。在子栏目“信息”功能中,学习者可以新闻、论文、资源、爱问等信息,待管理员审核通过后即可在网站中显示出来。另外,教师也可在教学过程中通过此模块要求学生提交作业,便于教师随时随地的批改作业。

二、网站的访问数据分析

1.地域分析

在统计到的访问该网站的地域中,国外共有12个国家访问了本网站。国内除西藏、澳门之外,其他省份、直辖市、特别行政区都有访问过本网站,这为我们今后在高中普及人工智能教育提供了有力的依据。但是,通过图2的数据我们也可看到,各个地区间的访问量差距较大,并且访问量靠前的几个省份基本上是沿海地区,而中部和西部地区的访问量比较少,所以在今后的工作中不仅要加强网站本身的建设和宣传,更要把人工智能教育的理念推广到中部和西部地区,使那里的中小学师生也接触人工智能的知识,激发他们对信息技术美好前景的向往。

2.被检索方式分析

搜索引擎是网络上最常用的获取资源的方式。掌握用户使用搜索引擎的情况,有助于了解网站的被检索方式。统计搜索关键字的次数,有助于了解网站被检索访问的原因。在专题网站建设完成后,向“百度”、“Google”等大型搜索引擎系统提交收录网页申请是极其必要的,它有利于提高网站的知名度和访问量。而在网站中增加“人工智能”,“prolog 源程序”等文字内容,将会有利于用户在盲目搜索时能访问到该专题网站。

3.受访页面分析

受访页面是指用户访问该专题网站时所停留的页面。通过对受访页面的统计,使我们能够掌握用户相对较为关注网站的哪些内容。表1数据中“学人工智能”占,“资源下载”占了,表明用户对人工智能的知识还不是很了解,对人工智能的认识还停留在“学”的层面,远未达到“教”的程度。人工智能教育类网站在建设中,如果能提供大量的人工智能的基础知识以及丰富的可下载资源,将会显著提高网站的受欢迎度以及用户的认可度。

4.回头率分析

在网站访问统计中,通常将距离上次访问超过12小时的再次访问记录为一次回头。通过对回头率的统计(表略)看出该专题网站的粘性不是很高,尤其是3次回访以上的用户还不多。通过对部分用户访谈后了解到,网站的更新速度慢,资源较少,内容偏难是其不愿进行多次回访的主要原因。所以,人工智能教育类网站在维护期间要注意内容的时效性、丰富性、通俗性才能保证网站访问的可持续性。

三、网站建设的若干思考

目前国内外有关人工智能的专题网站不多,针对人工智能教育的网站更少。在可供借鉴的成熟案例较少、研究又处于刚起步阶段的情况下,有必要对我们的工作进行反思总结。通过上述访问数据的分析,以及在人工智能教育专题网站建设的准备阶段,实施阶段及运行阶段的实践,我们认为在建设人工智能教育类网站时应当注意以下几个问题。

1. 充分关注用户信息

访问量是综合类或门户类网站的生命线,应当尽可能地拓宽访问者的类型与层次。但人工智能作为一门新兴学科,其专题网站的学科性特点甚至比普通的专题学习网站还要突出,因此单从访问量上来说,它是无法和门户类网站相比的。所以在建设的初期首先就要考虑的网站的对象问题,也就是要关注哪类人访问了网站。只有准确的掌握了用户的信息才能更好提供用户需要的资源。

在这里,人工智能教育专题网站是通过以下三种手段来获取用户信息的。

第一,用户必须注册才能访问网站,注册的内容包括年龄、身份、学历,电子邮件等内容。

人工智能科普教育活动总结 第3篇

摘要:本文从计算机学科本科的教学理念出发,提出了从计算机学科分支的角度认知人工智能,组织并实施教学的方法。

关键词:人工智能;综合学科;计算机学科分支

中图分类号:G642

文献标识码:B

1引言

人工智能是由多种学科相互渗透的综合学科,但它是明确属于计算机科学分支的学科。这是因为从功能上和方法上人工智能与计算机学科是一致的。实际上,人工智能不仅使用了许多其他计算机学科分支的技术,而且在发展过程中,也开拓了许多新的方法和技术,充实了计算机学科。若按计算机处理的对象来区分计算机应用的话,则可分为三个部分:数值计算、数据处理与知识处理,人工智能就对应知识处理工作。

对于我国高等院校计算机学科的本科教学来讲,人工智能课程的课时一般只有40课时左右。以什么角度组织教材内容,提高教学效果,使学生较容易地理解和掌握人工智能的原理与技术呢?通过多年的人工智能教学实践,我们逐渐总结出了进行人工智能教学的方法:既从计算机学科本科的教学理念出发,考虑人工智能这门学科的特点,以作为计算机学科的一门分支的角度认知人工智能,组织教材的知识架构并进行教学。用计算机学科的观点分析人工智能的基本原理与方法时,重点强调的是这些基本原理与方法与其他的计算机分支的共同点和不同点。共同点是强调计算机学科的本质,不同点是强调人工智能的本质。

2计算机学科本科的教学理念

计算机学科本科的教学理念可以归结为:传授知识、提高能力、培养素质(包括专业素质与品格素质,专业课以专业素质为主)。其中,原来作为教育核心的知识现被看成是教育的基础,即把知识作为载体,用来实现能力的提高,在潜移默化中实施素质教育。高等院校对学生能力的培养主要包括:学习能力、分析问题与解决问题的能力以及创新能力。对于本科学生,重在学习能力与分析问题与解决问题的能力,对创新只是培养兴趣。素质是知识和能力的升华,计算机专业素质显示的是这一领域的水平,素质水平的提升也将通过知识的增多和能力的增加体现出来。

3以计算机分支的角度认知人工智能

什么是人工智能?目前人们普遍接受的定义是:用机器来模拟人的智能,也就是用计算机来模拟人的智能。若以计算机分支的角度也就是用计算机学科的观点看待人工智能,我们需从两个方面加以说明。

首先,从计算机的能力,也就是它能做什么讲起。用计算机解决某种问题,需要有三个基本的条件:第一,必须把问题形式化。第二,问题是可计算的,就要有算法。第三,问题要有合理的复杂度。人的智能所能解决的问题往往不能满足这三个条件。因此,人工智能就是对于不能满足这些条件的问题,通过使用它的技术和方法,使问题满足这三个条件,由计算机去解决问题。比如,一般来讲不可能将自然语言全部形式化,但人工智能使用一阶谓词逻辑表示自然语言的部分句子,并用算法进行推理,解决一定范围的问题。另外,使用启发式搜索可降低问题的复杂度,使问题在可能的范围内得到解决。

其次,从计算机的核心技术加以阐述。用计算机解决问题是靠程序实现的,程序是什么?一本经典的计算机教科书的名字“算法+数据结构=程序”给出了解释,这说明在计算机学科中算法与数据结构的核心地位,一般的计算机程序也确实可分成这两个部分。而作为典型的人工智能程序可分成三个部分,控制部分(推理机)、规则库和数据库。其中,控制部分和规则库对应于算法,数据库对应于数据结构。实际上,控制部分由搜索策略和推理机制组成,规则库是将一般计算机程序的算法中的与实际问题有关的知识抽出来单独组成。而数据库往往用来存放一些基本的事实和一些中间的结果,也常常采用知识表示的方法,因此,人们也经常把规则库和数据库合称为知识库。在人工智能程序中与算法与数据结构对应的正是人工智能的两大核心:搜索和知识表示(包括推理)。

4以计算机分支的角度组织并实施教学

人工智能为了模拟人的智能,处理的对象是知识,知识处理则需采用知识表示。又由于往往没有确定的算法,只能使用搜索。本文的观点是人工智能课程的教学内容应以知识为主线,以知识表示和搜索为基石进行组织。

首先,教学的第一个核心是知识表示。知识表示就是研究用计算机来表示知识的方法,这些方法需满足两个条件:除了计算机可接受这个条件以外还要能刻画智能行为。这是与一般的数据结构不同的地方。什么方法适合呢?由此引出了逻辑表示方法。

形式逻辑是关于思维的形式和规律的科学,数理逻辑从逻辑上讲是现代的形式逻辑,是用符号和数学的方法来研究推理规律的学科。数理逻辑一般是指命题逻辑和一阶谓词逻辑。一阶谓词逻辑比命题逻辑表达能力强,逻辑的表达方式与人类的自然语言接近,因此,用一阶谓词逻辑作为知识表示工具容易被人接受。不仅如此,由一阶谓词逻辑表示已知条件和所要证明的定理,使用归结原理则可建立计算机程序实现自动定理证明(半可判定算法)。这一过程是在Herbrand定理的基础上得以成立的。由于人工智能中的许多问题都可以化成类似于定理证明的问题,因此可以把与Herbrand定理有关的一系列工作看成是表示和推理的理论基础。评价知识表示方法的性能,即要考察表示能力,又要考虑是否有效地支持知识的推理。显然,具有充分的表示能力又有坚实的理论基础的表示方法是最使人放心的,一阶谓词逻辑恰好满足这一条件。

在这一部分的讲授中,将通过一系列的演变过程,展现出如何将一组谓词公式转换成子句的集合,又如何通过使用置换与合一的手段,达到可以应用归结推理规则,而最终得到证明的目的,而这一切又都是在有严格的定理保证之下完成的。这些内容的讲授,对于培养学生严紧的逻辑思维能力是一个极好的实例。

逻辑表示与归结推理方法是知识表示的基础部分,用来说明人工智能系统进行推理的原理。而作为真正最实用的产生式表示法将通过Horn子句的正向推理和反向推理过程引入,产生式表示法中的带与不带变量的正、反向推理相当于命题逻辑和一阶谓词逻辑层面的Horn子句的正、反向推理。作为结构化表示的语义网络和框架表示法也以一阶谓词逻辑为基础,它们均可转变成为等价的一阶谓词逻辑的表示形式。

在教学中,关于其他知识表示方面的内容,比如:产生式规则、语义网络、框架,都以一阶谓词逻辑为基础给以说明。关于产生式表示法在人工智能的心理学认知体系结构中,被看成是人的思维中因果关系的一种反映,而在本文中则看成是一种类似于Horn子句形式的一种表示。在讲授时将这些内容作为一个整体,说明原理与实用方法之间的关系,根据实际问题的需要,可以降低表示的能力。而另一方面,为了解决实际问题,可以扩充表示的能力。

一阶谓词逻辑表示的能力虽然在通用的表示法中是最强的,但是知识与客观真理不同,它总是局部的、片面的或表面的,这在常识中尤为明显。在解题过程中还会不断地更新,知识表示要适应这个特点,采用经典的一阶谓词逻辑表达有困难,这就需要用非单调逻辑来表达。另一方面,在人工智能处理的信息和知识中,存在大量的不准确、不完全、不一致的地方,这又需要研究关于不确定性知识的表示和推理的研究。实际上,非单调逻辑和不确定性推理部分在教学中将作为知识表示的扩展加以介绍。机器学习作为人工智能的重要组成部分,它的主要方法都是基于归纳推理,也可以看成是非经典逻辑的应用。

人工智能教学的另一个核心是搜索问题。一般来讲,用计算机求解问题,就是用已知的知识,对于给定的数据进行加工,期望得到解答,其解法则由某种程序来表述。其他的计算机分支处理的问题,往往知识比较充分,例如多数的科学计算问题,就可以在看到数据以前根据知识写出程序,这个程序对于一切数据都是适用的。而人工智能处理的问题知识不够充分,或程序太复杂,此时可以写出一个元程序,对于给定的数据,它根据知识,做出一个程序专门加工这些给定的数据。这时,这个元程序可以通用于一大类知识,通常并不包含领域知识的具体细节,因此,对于这个元程序的研究就脱离了问题的具体领域,成为人工智能内部的课题,这正是搜索。

在教学中,通过掌握知识的多少来讲授各种不同的搜索。搜索是由于知识不足而产生的,同时搜索与知识是相辅相成的。当知识较多时,搜索的工作量不多,可使用一些盲目的搜索策略。当知识较少时,搜索的工作量较大,则需使用一些启发式的搜索策略。启发式搜索是搜索方法中需重点说明的,它起到了降低被求解问题复杂度,提高搜索效率的作用,但太强的启发信息,往往找不到最佳解。如何能减少搜索范围,提高搜索效率,而且还保证找到最佳解,这成为搜索方法应明确的问题。A*算法是在20世纪70年代初的研究成果,他解决了这个问题,证明了A*算法的可采纳性。类似于定理证明,在教学时也将A*算法及其有关证明看成是搜索方法的理论基础加以介绍。

在搜索部分的教学中,除了把A*算法及其有关证明作为重点,当作是搜索方法的理论基础来讲解以外,还要给出若干搜索算法。一方面,这些算法说明了各种搜索的方法,另一方面,在这些算法中经常有一些算法细节抽象的技巧,对这些内容的细致分析,将会逐渐提高学生抽象思维的能力。

在实际的知识库系统中,回溯和与或树的搜索算法应用较多。而当问题的有关知识较少,规模大到一定程度之后,往往采用引进了随机因素的搜索算法,比如:模拟退火算法、遗传算法等。现在,这些算法一般称为高级搜索,教学时作为搜索的扩展来讲授。

人工智能技术方面的研究往往涉及各应用领域的课题。反映到教学中,就是人工智能的各个分支的介绍,这包括知识库系统、自然语言理解、规划、机器人等。

总之,教学内容可分成两个部分,第一部分是基础理论和基本方法,包括:逻辑表示与归结推理方法、搜索原理,知识表示(包括产生式系统、语义网络、框架)、推理(包括不确定性推理、非单调推理)、机器学习。第二部分是实用技术,包括知识库系统、高级搜索、自然语言理解。

5结束语

经过长期的人工智能教学实践,笔者逐渐形成了以计算机学科分支的角度来讲授人工智能课程的思路。从学生的接受、理解和掌握人工智能的基本原理与技术方面来看,有较好的效果。但如何把计算机学科和其他人工智能所涉及的领域更完美地结合起来,较好地在教学效果与宽广的知识面之间找到平衡点,还需今后进一步的研究与探索。

参考文献

[1] 贲可荣,张彦铎. 人工智能[M]. 北京:清华大学出版社,2006.

[2] 马少平,朱小燕. 人工智能. [M]. 北京:清华大学出版社,2004.

[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.

[4] 马希文. 逻辑・语言・计算-马希文文选[M]. 北京:商务印书馆,2003.

[5] 高济,朱淼良,何钦铭. 人工智能基础[M]. 北京:高等教育出版社,2002.

[6] 中国计算机科学与技术学科教程2002研究组. 中国计算机科学与技术学科教程[M]. 北京:清华大学出版社,2002.

[7] Stuart Russell, Peter Norvig. 人工智能-一种现代方法[M]. 北京:人民邮电出版社,2002.

[8] Nils J. Nilsson. 人工智能[M]. 北京:机械工业出版社,1999.

人工智能科普教育活动总结 第4篇

关键词:人工智能;电气信息类;教学应用

教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。

一、人工智能时代的概述

人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯卡普兰(AndreasKaplan)和迈克尔海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。

其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业2本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。

二、人工智能对电气信息类专业人才需求的影响分析

人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。

三、人工智能给电气信息类专业提供的机遇

在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。

四、人工智能技术在电气信息类专业教育教学中的应用路径

(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。

(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。

(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。

(四)利用人工智能技术进行辅的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。

(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。

人工智能科普教育活动总结 第5篇

关键词: 人工智能 发展过程 研究热点 应用领域 未来发展

一、人工智能概述

人工智能(Artificial Intelligence,简称AI),也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉学科,是一门涉及心理学、认知科学、思维科学、信息科学、系统科学和生物科学等多学科的综合性技术学科,目前已在知识处理、模式识别、自然语言处理、博弈、自动定理证明、自动程序设计、专家系统、知识库、智能机器人等多个领域取得举世瞩目的成果,并形成了多元化的发展方向。

二、人工智能的发展过程

人工智能经历了三次飞跃阶段:第一次是实现问题求解,代替人完成部分逻辑推理工作,如机器定理证明和专家系统;第二次是智能系统能够和环境交互,从运行的环境中获取信息,代替人完成包括不确定性在内的部分思维工作,通过自身的动作,对环境施加影响,并适应环境的变化,如智能机器人;第三次是智能系统,具有类人的认知和思维能力,能够发现新的知识,去完成面临的任务,如基于数据挖掘的系统。

三、人工智能的研究热点

AI研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面是因为计算机硬件突飞猛进地发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低,以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的三个热点是:智能接口、数据挖掘、主体及多主体系统。

1.智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译及自然语言理解等技术已经开始实用化。

2.数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但是又潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现及网上数据挖掘等。

3.主体系统是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定的自主性。主体试图自治、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理,主要应用在对现实世界和社会的模拟、机器人及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习及多主体系统应用等方面。

四、人工智能的应用领域

1.专家系统

专家系统是一个具有大量专门知识与经验的程序系统,专家系统存储着某个专门领域中经过事先总结、分析并按某种模式表示的专家知识,以及拥有类似于领域专家解决实际问题的推理机制。专家系统的开发和研究是人工智能中最活跃的一个应用研究领域,涉及社会各个方面。

2.知识库系统

知识库系统也叫数据库系统,是储存某学科大量事实的计算机软件系统,它可以回答用户提出的有关该学科的各种问题。知识库系统的设计是计算机科学的一个活跃的分支。为了有效地表示、储存和检索大量事实,已经发展出了许多技术。但是在设计智能信息检索系统时还是遇到很多问题,包括对自然语言的理解,根据储存的事实演绎答案的问题、理解询问和演绎答案所需要的知识都可能超出该学科领域数据库所表示的知识。

3.物景分析

计算机视觉已从模式识别的一个研究领域发展为一门独立的学科。视觉是感知问题之一。整个感知问题的要点是形成一个精练的表示,以表示难以处理的、极其庞大的未经加工的输入数据。最终表示的性质和质量取决于感知系统的目标。机器视觉的前沿研究领域包括实时并行处理、主动式定性视觉、动态和时变视觉、三维景物的建模与识别、实时图像压缩传送和复原、多光谱和彩色图像的处理与解释等。机器视觉已在机器人装配、卫星图像处理、工业过程监控、飞行器跟踪和制导及电视实况转播等领域获得极为广泛的应用。

4.模式识别

模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统能够弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。模式识别在二维的文字、图形和图像的识别方面已取得许多成果,在三维景物、活动目标的识别和分析方面是目前研究的热点,同时它还是智能计算机和智能机器人研究的十分重要的基础。此外,人工智能还在机器视觉、组合调度问题、自然语言理解、机器学习、博弈、定理证明等研究应用领域发挥着重要作用。可以说人工智能已深入各行各业,对人类社会作出了巨大的贡献。

5.机器人

机器人学所研究的问题,从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法,无所不包。尽管已经建立了一些比较复杂的机器人系统,但是现在工业上运行的机器人都是一些按预先编好的程序执行某些重复作业的简单装置,大多数工业机器人是“盲人”。机器人和机器人学的研究促进了许多人工智能思想的发展。智能机器人的研究和应用体现出广泛的学科交叉,涉及众多课题。机器人已在工业、农业、商业、旅游业、空中和海洋及国防等多个领域获得越来越普遍的应用。

五、人工智能的未来发展

目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,Soar在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。上世纪80年代,以NewellA为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar已经显示出强大的问题求解能力。在Soar中已实现了30多种搜索方法,实现了若干知识密集型任务(专家系统),如RI等。对于人工智能未来的发展方向,专家们通过一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络及其情感。

目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域。未来智能计算机的构成,可能就是作为主机的冯・诺依曼型机与作为智能的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

根据这些前瞻性研究我们也可以通过想象模拟勾画出人工智能未来发展的三个阶段。

1.融合时期(2010―2020年)

(1)用语言操纵和控制的智能化设备十分普及,像远程医疗这样的服务也更为完善。

(2)以计算机和互联网为基础的远程教育十分普及,在家就可以上大学。

(3)在身体里植入许多不同功能的芯片已不新奇。

(4)量子计算机和DNA计算机会有更大发展,新材料不断问世。

(5)抗病毒程序可以防止各种非自然因素引发灾难。

2.自信时期(2020―2030年)

(1)智能化计算机和互联网既能自我修复,也能自行进行研究、生产产品。

(2)一些新型材料的出现,促使智能化向更高层次发展。

(3)有了高水准智能化技术的协助,人们“定居火星梦”可能性大增。

3.非神秘时期(2030―2040年)

(1)新的全息模式世界将取代原有几何模式的世界。

(2)人们对一些目前无法解释的自然现象会有更完善的解释。

(3)人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。

人工智能科普教育活动总结 第6篇

【关键字】人工智能;课程改革;高中;信息技术;课程实施

【中图分类号】G420 【文献标识码】A 【论文编号】1009―8097 (2008) 10―0043―04

教育部在2003年颁布的高中信息技术新课程标准中,首次把“人工智能初步”设置为选修模块,与多媒体、网络、程序设计、数据库技术等一起列入信息技术课程体系[1]。此举曾被视作信息技术课程改革的亮点之一。然而,在如今高中信息技术新课改已经全面铺开之际,人工智能选修课程的推进仍然举步维艰,面临诸多困难和问题。

一 高中人工智能课程的现状分析

自2004年我国部分省级实验区开始推进高中新课程改革以来,信息技术课程改革已经开展了四年之久。从目前的总体情况来看,信息技术课程的基础模块与多媒体技术、网络技术、算法与程序设计三个选修模块的实施情况较好,而数据库技术与人工智能初步两个选修模块的推进情况相对不佳。特别是人工智能课程,至今在全国范围内正式开设该课程的学校寥寥可数,少数高中展开了一定的探索和实验,而大多数学校仍持有观望态度。以下分别从实施取向和实施层次的角度分析该课程的现状:

(1) 课程实施的取向

由于我国长期以来实行的是全国统一的课程与教材,按照统一规定执行教学计划,对学校和学生的评价也是按照统一标准与方式实施的,因此我国以往的课程实施基本上都采用了忠实观的取向[2]。本次新课改中信息技术课程的实施过程难免受到这种取向的影响。然而,新课程标准中对信息技术技术各个模块的具体实施并没有明确而详细的规定,从而使教师对包括人工智能模块在内的课程实施缺乏长期惯于依赖的参照和依据,增加了课程实施的难度,造成部分模块的课程难以开设的情况。

(2) 课程实施的层次

课程实施包括五个层面的变化,即教材的改变、组织方式的改变、角色和行为的改变、知识与理解的改变、价值的内化[3]。目前高中人工智能课程在教材改变的层面已经做出了一定的努力。在课程标准的指导下,现已出版的五套教材在体例、版面、学习活动、评价等方面进行了多样化的设计,基本上贯彻了新课标所倡导的课程目标和理念。在组织方式的层次,少数已经开设人工智能课程的学校结合学生的兴趣与学校的实际情况,有针对性地开展了课程的组织。然而,仍然有一些地区或学校不愿或不习惯打破原有的课程组织方式,而是采用硬性规定的方式,人为指定两三门课程,将选修变为必修,限制学生的自由选择,依然维持原有的固定班级授课的形式。教材的改变仅仅是课程实施的开始,在组织方式、角色或行为、知识与理解、价值等层次,大部分学校还未发生变化或变化还很小。

(3) 课程实施的典型个案

目前国内开展人工智能课程教学或实验的典型学校如表1所示。总体来看,这两所学校都地处东南沿海地区,且学校本身比较积极参与高中新课改的实践探索,属于“敢于吃螃蟹”的类型。考虑到课程本身的要求较高,两所学校都选取了基础较好的学生开展教学。到目前为止,两所学校均已开展了三期的教学或实验探索,任课教师及时总结教学心得体会,并在相关教学刊物或课程研修活动中与广大一线教师分享教学经验。

二 高中人工智能课程的影响因素

根据Snyder的研究,可以把课程实施的影响因素归纳为四个方面:课程改革自身的性质、校区的整体情况、学校的水平以及外部环境[4]。结合高中人工智能课程的现状,本文分别从以上四个方面来探讨影响该课程的主要因素。

(1) 课改自身的性质

课程改革本身的性质是影响课程实施的第一要素。它包括课程改革的必要性及其相关性、改革方案的清晰程度、改革内容的复杂性以及改革方案的质量与实用性。结合信息技术新课程改革的相关调查研究,广大信息技术教师和教研人员对课改的必要性应该认识得比较到位,然而他们对信息技术课程中是否有必要单独开设人工智能模块存有疑惑。其次,不少教师对课程改革方案(课程标准)的认识并不是非常清晰。他们认为新课程标准中的教学理念、实施建议等内容相对抽象,不易把握和理解,缺乏具体的针对性,可操作性不强。再次,人工智能课程的实用性相比其他模块并不明显,课程内容也相对难度较高。这些因素造成课程设置的必要性不强、实施难度大、实用性不高,直接影响人工智能课程在学校的顺利设置。

(2) 校区的整体情况

校区的整体情况主要包括地区的适应性、地方管理部门的支持、教学队伍的培养、教学研讨和交流等等。各地区对课程改革的需要程度会直接影响人们实施课程的积极性和主动性。我国东西部地区的学校对课程改革的需求程度不同,从而造成了课程实施的地区差别。从目前开设人工智能课程或教学实验的学校来看,均分布于东南沿海较为发达的地区。这些学校的共同特点是基础条件较好,对课程改革的积极性高,敢于进行教学尝试和革新。此外,地方管理部分的支持对课程实施也有很大影响,如广东省为了推动信息技术课程改革,专门出台了关于课程标准的教学指导意见[5]。其中强调“要特别注意人工智能初步”,并针对人工智能课程提供了较为具体的教学建议,从而促使该省出现了全国最早正式开设人工智能课程的学校。师资队伍也是影响课程的因素之一。目前大多数高中缺乏熟悉人工智能课程内容和教学方法的专业教师,使得学校无法开设该课程。因此,有关人工智能课程的研讨和学习交流显得尤为重要,然而目前这些方面的活动总体上相对缺乏。

(3) 学校的水平

学校水平对课程实施的影响因素包括校长的作用、教师的个人特征和教师集体的行为取向。学校是课程改革的基本单位,校长和教师是学校课程改革的动因。校长对课改理念的理解,以及对课改的支持、参与程度都会影响课程的顺利实施。校长通常会根据上级主管部门的意见,结合本校的实际情况,权衡课程改革可能对学校形成的各种影响。在高考的影响下,信息技术课程在高中各科中长期存在地位“低人一等”的现象,甚至出现课时常被“侵占”的现象。如果校长对信息技术课程本身不重视,那么要求学校开设人工智能选修课无疑是一种奢望。此外,一所学校教师个人和集体的改革意识的强弱也会影响课程的实施。从人工智能课程的现状来看,恰好印证了这一点:改革意识强的教师个人或教研组即使没有上级的硬性指令,也能积极展开各选修模块的教学尝试和探索,并自觉地从教学者成长为研究者,而思想保守的学校即使具备了课程实施的基本条件,也不愿积极开设相关的选修课程,长期停留于课程的“忠实执行者”的层次。

(4) 外部环境

外部环境因素主要包括政府部门的重视、外部机构的支持以及社区与家长的协助。各国课程改革的经验表明,教育行政部门和相关机构的态度在很大程度上影响到新课程的顺利实施。特别是我国长期以来受到前苏联教育模式的影响,课程改革通常是自上而下的模式,新课程的实施主要依靠各级政府教育行政部门的政策和指令的推动。本次新课程改革同样继承了这一模式,但是整个教育体制和评价体系未能及时进行相应的调整,因此在某些方面造成各级教育部门的政策抵触,出现“上有政策、下有对策”的情况。此外,社区与家长对新课改的认识和态度也影响到人工智能课程的实施。研究表明,社区与家长更加关心的是新课改是否有助于提高学生的学业成绩,是否会给学生造成更大的负担,而对学生能力的全面发展和个性的培养则是其次的考虑。因此,要使社区与家长认识和了解课程改革的意义和目标,引导其关心新课程、支持新课程才能更好的促进新课改的健康发展,进而才可能使得包括人工智能在内的高中各科选修模块得以全面开设与实施。

三 高中人工智能课程的反思

通过调查访谈以及与相关授课教师的交流,笔者了解到高中人工智能课程的教学情况和教师的经验体会。总体来说,该课程的推进情况不如预期理想,需要从课程的设计、管理、教学以及评价等方面进行反思。

(1) 课程设计

本次高中信息技术课程改革将原来的一门课程分解为1个必修模块和5个选修模块,从而给学生提供多样化的选择。“人工智能初步”选修模块是作为智能信息技术处理专题设置的,以反映信息技术学科的发展趋势,体现教育的时代性要求。课程设置的目的在于使学生在技术掌握与使用的过程中,逐渐领会信息技术在现代社会中的应用以及对科学技术和人类发展的深远意义[6]。然而,以上的描述更多是该模块的隐性价值,相比其他模块该课程的显性价值并不是很直观。而一线的信息技术教师较多关注的是该课程的显性价值:课程能给学生带来些什么?学生的实践能力能否有较大提高?教师们在没有找到一个合理的价值依托之前,一般不会贸然开课。这一点值得课程设计者和教研人员的深刻思考。

通过网络问卷调查,不少教师认为人工智能课程在高中开设是有一定必要性的[7],但并不意味着所有的学生都需要学习该课程。课程应面向对人工智能有一定兴趣的学习者,且最好有一定的基础。事实上,相对于其他选修模块,选择人工智能课程的学生并不是很多。因此,结合我国目前的情况,可以考虑优先在发达地区条件较好的部分学校开设,再进一步利用其示范作用,以点带面,逐步铺开培训、指导、交流的规模和影响面,积极稳妥地推进高中人工智能课程的建设。

(2) 课程管理

课程的有效管理有助于提高课程实施的质量。上个世纪90年代以来,我国的中小学课程由原来的中央集权管理体制逐步转变为国家、地方、学校的三级管理体制。国家负责课程的总体规划,省级教育部门结合本地区实际制定课程计划或实施方案,而学校也将有权根据学校传统或学生兴趣开发适合本校的课程。目前人工智能课程虽然已被列入国家课程标准,但在地方管理层面并未得到应有的认可。部分地区考虑到高考因素,直接将人工智能模块排除在学生的选择范围之外,无疑成为阻碍该课程顺利实施的一个重要原因。

目前我国高中了解熟悉人工智能教学内容、方法的教师十分缺乏,相关教育主管部门需加强该课程的师资培养,邀请教材编写人员和相关专家,积极开展各级培训、研讨和交流活动,以务实的态度来听取学科教师的意见,为他们提供一些明确的、可操作的指导和建议。也可以开展优秀教学案例的征集和评奖,通过公开课的观摩和点评活动,或吸纳中学教师参与有关课程改革和教学研究的课题,以此提高教师参与改革的积极性。此外,国内高等师范院校信息技术相关专业应该对新课改作出及时的反应,针对高中信息技术各选修模块为师范生开设相关的课程,为课改的成功实施提供后备师资力量的支持。

(3) 课程教学

从已开展的人工智能课程教学或实验情况来看,主要的教学体会包括:教学对象选取时要有针对性,不宜硬性指定,应结合学习者自己的兴趣和学习基础供其自由选择;由于课程的理论和技术的要求较高,不宜大量采用“讲授法”进行教学,应设计一些有挑战性的活动供学生实践;为保证教学进度有序进行,可通过课堂小测及时巩固所学内容;应提供良好的网络条件和计算机设备以支持课程教学和实践的顺利开展。

国外一些高校通过远程网络的手段与中学合作开展人工智能教学,加快了课程建设的步伐,并提高了教学质量。大学负责教学网站的建设维护,主持与中小学的讨论答疑,中学则负责课程教学的具体实施。文中个案也印证了这种做法的有效性:让一些致力于高中人工智能课程研究的高校和部分条件较好的中学建立共同体,协作推动课程的实施。一方面,高校研究人员能为中学提供教学指导建议、技术和资源的支持;另一方面,中学的教学实践也为高校进行课程教学研究提供了材料和依据。

(4) 课程评价

研究表明,评价目前已成为影响高中信息技术新课程实施的一个重要问题[8]。从本次课改的动因来看,针对我国现行教育体制下的高考选拔制度在很多方面呈现的弊端,新课改力图在一定程度上改变这一局面,努力使学习者能够真正获得全面的发展。但是,在目前情况下以高考为“指挥棒”的评价体系短期内仍然无法发生质的变化。高中新课改实施以来,部分省份相继将信息技术课程纳入了高考的范畴,以往信息技术课程不受重视的情况逐渐得到了一些改善。然而,高考是否解决信息技术课程评价问题的一剂良药,进而为人工智能课程的实施及其评价带来新的希望,目前仍是值得怀疑和思考的问题。特别是当前高考科目已经较多,再增加科目无疑会加重学习者的负担,且很容易回到应试教育的老路上。

其次,虽然新课程标准中提供了关于课程评价的建议,但是其中的内容仍然比较抽象,可操作性不够。如在信息技术课程标准的评价建议中,提倡评价主体的多元化,关注学生的个别差异,综合应用多种过程性评价方式,适当渗透表现性评价的理念,等等。这些内容从理念上来讲都是很好的,但是如何在教学实践中加以操作实施,对一线教师而言仍是不够明确和难以把握的问题。而且,信息技术课程的每个模块各有特色,然而课程标准并未就此提供专门的评价建议。因此,一套科学合理、适合人工智能课程的评价体系和方法仍需要教研人员在实践中不断摸索总结。

参考文献

[1] 教育部. 普通高中技术课程标准(实验) [S].北京:人民教育出版社,2003:9.

[2] 钟启泉. 课程论[M].北京:教育科学出版社,2007:207-214.

[3] Fullan, M. & Pomfret, A. Research on curriculum and instruction implementation [J]. Review of education research, 1997, 47(1).

[4] Snyder . & Zumwalt K. Curriculum implementation [M]. In Jackson P. W. (Ed).Handbook of Research on Curriculum. New York: Macmillan Publishing Company, 1992.

[5] 珠海教育信息网. 广东省普通高中信息技术课程标准教学指导意见 [DB/OL].

[6] 顾建军等.技术课程标准(实验)解读[M].武汉:北教育出版社,004:9.